
SDK应用_HCU 原理与应用（二）​

版本：

Config Tool Version：2.7.6​

YTM32B1MD2 SDK version：1.3.2​

前言

由于 YTM32B1MD24 新增了 RSA 与 ECC，本文主要针对 AES，SHA，RSA，ECC 进行原理性质的说

明，以及 Demo 示例解释。​

另外最后附上了全系列芯片的算法功能对比，以及算法效率对比

AES​

AES：高级加密标准（Advanced Encryption Standard）​

对称密钥加密（加密和解密用相同的密钥）

 AES 的区块长度固定为 128 位，密钥长度则可以是128，192 或256 位，对应的加密轮数为10、12、

14 轮，相比较而言，AES-256 的安全性最高，AES-128 的性能最高。​

 加密流程大致如下图所示。​

ECB​

电码本模式Electronic Codebook​

 最简单的工作模式，在该模式下，每一个明文块的加密都是完全独立，互不干涉的。只能加密块数

据，加密解密可以并行执行。

 ECB 模式一般只适用于小数据量的字符信息的安全性保护，例如密钥保护。​

优点：

• 简单

• 有利于并行计算

缺点：

• 相同的明文块经过加密会变成相同的密文块，因此安全性较差，难以抵抗统计分析攻击。

CBC​

密码分组链接模式 Cipher Block Chaining​

 为了克服 ECB 的缺点，引入初始向量IV，可以防止同样的明文块始终加密成同样的密文块，IV 作为

初始化变量，参与第一个明文块的异或，后续的每一个明文块和它前一个明文块所加密出的密文块相

异或。只能加密块数据，加密是串行，解密可以并行。

优点：

• 安全性更高

缺点：

• 无法并行计算，性能上不如ECB。​

CTR​

计算器模式 Counter​

 内部有一个自增的算子，这个算子用密钥加密之后的输出和明文异或的结果得到密文，相当于一次

一密。这种加密方式简单快速，安全可靠，而且可以并行加密。CTR 涉及参量：Nonce 随机数、

Counter 计数器和密钥。Nonce 随机数和Counter 计数器整体可看作计数器。​

CCM​

CCM 模式（Counter with CBC-MAC）​

 CCM 首先使用CBC-MAC 模式来认证传输帧，然后使用CTR 模式来加密帧，CBC-MAC 实际上就是对

消息使用CBC 模式进行加密，再取密文的最后一块作为认证码，MAC 为消息认证码，MAC 值是使用明

文和密钥计算得出的，在攻击者不知道密钥但修改了消息内容时，使用MAC 可以让接收方知道消息是

否被篡改。

 构造B0、B1……、Bn，每组16 个字节，B0、B1 有特定结构，具体内容请参考相关协议，以B0 加

密结果作为IV 分别对B1 B2……. Bn 做CBC 计算，结果与分段明文做异或，下一个结果与计数器初值

Ctr0 的CTR 加密结果做异或得到tag，明文P1、P2……、Pn 做CTR 加密得到密文C1、C2……、Cn。​

CMAC​

CMAC 模式（Cipher-based MAC）​

 只用于生成消息认证码，对于待加密消息M，应用CBC-MAC 算法。在CMAC 操作中有两种情况：如

果输入消息长度等于Block 的整数倍，最后的Block M_n 需要先与K1 异或再进行处理；如果输入的消

息长度不等于Block 的整数倍，最后的Block M_n 需要补齐到一个Block 的大小，与K2 异或，再进行

处理。最后得到认证码T。​

输入密钥K，输出子密钥K1 与K2。过程如下：​

1. 用密钥K 对全零输入块加密得到L​

2. K1 通过如下方式导出：如果L 的最高有效位为0，则K1：=L 左移1 位；否则，K1 等于const_Rb 与

左移1 位的L 异或。​

3. K2 通过如下方式导出：如果K1 的最高有效位为0，则K2：=K1 左移1 位；否则，K2 等于const_Rb

与左移1 位的K1 异或。​

const_Rb 为固定值，只与块大小有关，128bit 时const_Rb = 012010000111，64bit 时const_Rb =

05911011​

GCM​

GCM模式（GMAC CTR Mode）​

先进行CTR加密，得到的密文会与GMAC乘法处理后的附加消息及计数器初值做异或，得到MAC值。最

后，密文接收者会收到密文、IV（计数器CTR的初始值）、MAC值。​

GMAC​

GMAC (Galois Message Authentication Code)​

 GMAC 是基于 AES 和 GHASH 的高效、仅用于认证的算法。它利用 GCM 模式的认证部分，为消息和

可选的关联数据生成一个认证标签（MAC），以验证数据的完整性和来源真实性。​

 注意，GCM 得到的 MAC 有明文数据的参与，所以与 GMAC 计算同一段内容时，最终得到的 MAC 不

相同。

SHA​

 安全散列算法（英语：Secure Hash Algorithm，缩写为SHA）是一个密码散列函数家族，是FIPS所

认证的安全散列算法。能计算出一个数字消息所对应到的，长度固定的字符串（又称消息摘要）的算

法。且若输入的消息不同，它们对应到不同字符串的机率很高。

 SHA家族的五个算法，分别是 SHA-1、 SHA-224 、 SHA-256 、 SHA-384 ，和 SHA-512 ，
由美国国家安全局（NSA）所设计，并由美国国家标准与技术研究院（NIST）发布；是美国的政府标

https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2F%25E5%25AF%2586%25E7%25A0%2581%25E6%2595%25A3%25E5%2588%2597%25E5%2587%25BD%25E6%2595%25B0
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FFIPS
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2F%25E6%2595%25A3%25E5%2588%2597%25E7%25AE%2597%25E6%25B3%2595
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FSHA-1
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2F%25E7%25BE%258E%25E5%259B%25BD%25E5%259B%25BD%25E5%25AE%25B6%25E5%25AE%2589%25E5%2585%25A8%25E5%25B1%2580

准。后四者有时并称为 SHA-2 。 SHA-1 在许多安全协定中广为使用，包括 TLS和 SSL、 PGP、
SSH、 S/MIME 和 IPsec ，曾被视为是 MD5（更早之前被广为使用的杂凑函数）的后继者。但
SHA-1 的安全性如今被密码学家严重质疑；虽然至今尚未出现对 SHA-2 有效的攻击，它的算法跟
SHA-1 基本上仍然相似；因此有些人开始发展其他替代的杂凑算法。

HMAC​

HMAC Hash-based Message Authentication Code, 哈希消息认证码.​

 HMAC是密钥相关的哈希运算消息认证码，HMAC运算利用哈希算法，以一个密钥和一个消息为输

入，生成一个消息摘要作为输出。

 HMAC中的H代指Hash散列算法，HMAC可以使用多种单项散列式，例如使用SHA-1，则构成HMAC-

1，选用SHA-256散列算法，则构成HMAC-256。​

RSA​

RSA (Rivest Shamir Adleman)​

RSA 是非对称算法，有公钥与私钥，加密与解密流程如下图所示。常见的有 RSA-

1024/2048/3072/4096​

RSA 密钥生成​

1. 准备两个非常大的素数​ 和​ ​p q

2. 利用字符串模拟计算大素数​ 和​ 的乘积 ​ ​p q n = pq

3. 同样方法计算 ​ ，这里 ​ 为​ 的欧拉函数​m = (p − 1)(q − 1) m n

4. 找到一个数​ ，满足 ​ （即 ​ 和​ 互素）​e(1 < e < m) gcd(m, e) = 1 e m

5. 计算​ 在模​ 域上的逆元​ （即满足​ ）​e m d edmodm = 1

6. 至此，公钥和私钥生成完毕：​ 为公钥，​ 为私钥​(n, e) (n, d)

https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FTLS
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FSSL
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FPGP
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FSSH
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FMD5
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2F%25E5%2593%2588%25E5%25B8%258C%25E8%25BF%2590%25E7%25AE%2597
https://zhida.zhihu.com/search?content_id=162808958&content_type=Article&match_order=1&q=SHA-1&zhida_source=entity
https://zhida.zhihu.com/search?content_id=162808958&content_type=Article&match_order=1&q=SHA-256&zhida_source=entity

RSA 加密​

 对于明文​ ，用公钥​ 对 加密的过程，就是将​ 转换成数字（字符串的话取其 ASCII码或者

unicode 值），然后通过幂取模计算出 ，其中​ 就是密文；​

x (n, e) x x

y

​ ​y = x modne

RSA 解密​

 对于密文​ ，用私钥​ 对 进行解密的过程和加密类似，同样是计算幂取模；​y (n, d) y

​ ​x = y modnd

ECC​

ECC (Elliptic Curves Cryptography)​

 ECC算法以指定的椭圆曲线为基础，将消息映射成曲线上的一个点，通过“点加”和“点乘”操作来

进行椭圆上点的变换，最后得到的点作为加密结果。

 本章主要介绍 ECC 算法原理，以及 ECDSA 的加密流程​

ECC 简介​

ECC 曲线的参数需要包含​

• p：有限域​

• a：多项式一次系数​

• b：多项式常数系数​

• G：基点​

• n：椭圆曲线的阶数​

例如比特币 Bitcoin 使用的 secp256K1 这条曲线的参数如下：​

ECC 点加​

 椭圆曲线上的两个点相加，并非是横坐标与纵坐标的相加，例如下图中，椭圆曲线上的两点，P，Q

相加，取 过P，Q两点的直线，与椭圆曲线相交的点 R'，取 R' 作 X 轴对称的点 R 即得两点相加的结

果。 R = P + Q​

ECC 点乘​

 椭圆曲线的点乘运算会稍微复杂一点。例如下图，期望得到 2 * P 的结果，需要在 P 点作关于椭圆曲

线的切线，与椭圆曲线相交的点 R'，取 R' 作 X 轴对称的点 R 即得点乘的结果。 R = 2 * P；如果需要计

算多倍的值，例如希望计算 11 * P，则要将​

​ 。​11 ∗ P = 8 ∗ P + 2 ∗ P + P = 2 ∗ (4 ∗ P) + 2 ∗ P + P = 2 ∗ (2 ∗ (2 ∗ P)) + 2 ∗ P + P

2P，4P，8P 的结果先计算出来，随后依次进行点加，即可得到 11 * P​

ECDSA ​

ECDSA（Elliptic Curve Digital Signature Algorithm）​

 ECDSA 是一种基于椭圆曲线密码学（Elliptic Curve Cryptography, ECC）的数字签名算法，伴以摘

要算法，即可完成对消息的加密。

 下面对 ECDSA 算法流程进行简述​

生成公钥与私钥​

私钥​

一个随机生成的大数据 d，要求​ ，其中 n 是椭圆曲线的阶。​1 <= d <= n − 1

公钥​

使用私钥 d 生成公钥​ ，其中 G 是曲线的基点​Q = d ∗ G

签名​

1. 计算消息的 Hash 值，使用哈希函数（例如 SHA-256）对消息 M 进行计算，得到消息的摘要

​ ​h = Hash(M)

2. 从[1,n-1] 范围内选择任意一个随机数 k，该值同样是私密的，不能泄露，且尽量保证每一次签名生

成，都使用不同的 k 来保证私钥不会被泄露。

3. 计算签名值，​ ，其中 G 是曲线的基点，取 r 为 R 点的横坐标值，即 ​ ​R = k ∗ G r = R ​modnx

4. 计算​ ，其中 ​ 是 k 的乘法逆元​s = k ∗−1 (h+ d ∗ r)modn k−1

5. 签名对（r，s）即消息最终的数字签名​

6. 签名对（r，s），原始消息 M，与公钥 Q 会一同发送给接收方供验签​

验签​

1. 计算消息的 Hash 值，使用哈希函数（例如 SHA-256）对消息 M 进行计算，得到消息的摘要

​ ​h = Hash(M)

2. 验证签名在有限域内，即检查签名对（r，s），两个值均在 [1,n] 范围内​

3. 计算如下​ ，​ ，​ ​v ​ =1 s modn−1 v ​ =2 v ​ ∗1 hmodn v ​ =3 v ​ ∗1 rmodn

4. 计算曲线点 ​ ，其中 G 是曲线的基点，Q 是公钥​P = v ​ ∗2 G + v ​ ∗3 Q

5. 最后验证 r 是否为 P 点的横坐标，即 ​ ​rmodn = P ​modnx

6. 验证成功，则表示消息的可靠性，否则就证明，签名对，消息或公钥中至少有一项被篡改

国密算法

国密即国家密码局认定的国产密码算法。主要有SM1，SM2，SM3，SM4。目前云途硬件仅支持

SM4-ECB 算法，其余国密算法均不支持。开此章节仅作知识补充。​

• SM1 为对称加密。其加密强度与AES相当。该算法不公开，调用该算法时，需要通过加密芯片的接
口进行调用。

• SM2为非对称加密，基于ECC。该算法已公开。由于该算法基于ECC，故其签名速度与秘钥生成速
度都快于RSA。ECC 256位（SM2采用的就是ECC 256位的一种）安全强度比RSA 2048位高，但运

算速度快于RSA。​

• SM3 消息摘要。可以用MD5作为对比理解。该算法已公开。校验结果为256位。​

• SM4 无线局域网标准的分组数据算法。对称加密，密钥长度和分组长度均为128位。​

软件应用

每款芯片支持的加密算法不完全相同，且 HCU (Hardware Cryptography Unit) 也有迭代，目前有两个

版本的 HCU 驱动，需要注意区分。​

HCU 初始化​

代码块status_t HCU_DRV_Init(const hcu_user_config_t * userConfig, hcu_state_t
*state);

初始化函数主要实现了如下功能：

1. 对状态机进行初始化

2. 配置明文与密文的交换方式，默认不交换

3. 配置明文与密文的数据搬运方式，轮询，中断 or DMA​

AES 密钥加载​

HCU v1​

软件密钥​

代码块​

status_t HCU_DRV_LoadUserKey(const void *key, hcu_key_size_t keySize);

直接传入密钥，通过软件方式直接将密钥加载至 HCU 引擎供运算。​

硬件密钥​

代码块​

status_t FLASH_DRV_LoadAESKey(uint32_t instance, uint32_t address);
......
static inline void HCU_SetKeySize(hcu_key_size_t size);

传入 AES 密钥在 HCU_NVR 中的存储地址，随后通过硬件将密钥加载至 HCU 引擎供运算。如果 HCU

支持不同长度的密钥长度，需要额外设置密钥长度。(AES-128/192/256)​

HCU v2​

密钥加载直接封在各个加密函数内部，不需要额外调用 API 去实现密钥加载。​

AES-ECB​

HCU v1​

代码块​

status_t HCU_DRV_EncryptECB(const void *plainText, uint16_t length, void

1

1

1
2
3

1

*cipherText);
......
status_t HCU_DRV_DecryptECB(const void *cipherText, uint16_t length, void
*plainText);

驱动提供了 AES-ECB 加密与解密函数，若加密，则需要输入明文，与明文长度，即可得到对应的

密文。由于一次最大输入的明文长度有限，如果明文长度超出限制，可分多个 block 进行加密。​

HCU v2​

代码块​

typedef struct
{
 uint32_t const *dataInputPtr; /*!< Specifies current processing data
input pointer */
 uint32_t *dataOutputPtr; /*!< Specifies current processing data
output pointer */
 uint32_t msgLen; /*!< Specifies the length of message */
 hcu_msg_type_t msgType; /*!< Specifies the type of message */
 bool hwKeySelected; /*!< Specifies hardware key or software key
selected */
 uint32_t hwKeySlot; /*!< Specifies index of hardware key in
HCU_NVR */
 uint32_t const * swKeyPtr; /*!< Specifies current software key */
 hcu_key_size_t keySize; /*!< Specifies the key size */
} aes_algorithm_config_t;

status_t HCU_DRV_EncryptECB(aes_algorithm_config_t * aesAlgCfg);
......
status_t HCU_DRV_DecryptECB(aes_algorithm_config_t * aesAlgCfg);

HCU v2 版本驱动在 AES-ECB 加密需要传入一个结构体指针，下面对这个指针进行解释：​

1. dataInputPtr：待加密，或待解密的数据​

2. dataOutputPtr：加密后，或解密后的结果

3. msgLen：输入数据的长度​

4. msgType：当前数据块的类型，指示当前是第一个block，或最后一个 block，或中间的 block​

5. hwKeySelected：是否选择加载硬件密钥​

6. hwKeySlot：硬件密钥的序列号，即选择加载 HCU_NVR 第几组密钥​

7. swKeyPtr：软件密钥​

8. keySize：密钥长度​

2
3

1
2
3

4

5
6
7

8

9
10
11
12
13
14
15

AES-CMAC​

HCU v1​

代码块​

typedef enum
{
 MSG_START = 0x02U, /*!< Start of a message block */
 MSG_END = 0x01U, /*!< End of a message block */
 MSG_ALL = 0x03U, /*!< All message in one block */
 MSG_MIDDLE = 0x00U, /*!< All message in one block */
} hcu_msg_type_t;

typedef struct
{
 uint8_t *macPtr; /*!< Specifies the mac used for the CMAC operation
*/
 uint8_t macLen; /*!< Specifies the length of the mac used for the
CMAC operation */
} hcu_cmac_config_t;

status_t HCU_DRV_GenerateMAC(const void *msg, uint16_t msgLen, hcu_msg_type_t
msgType,
 hcu_cmac_config_t *cmacConfig);
......
status_t HCU_DRV_AuthorizeMAC(const void *msg, uint16_t msgLen, hcu_msg_type_t
msgType,
 hcu_cmac_config_t *cmacConfig);

/* Generate CMAC in one block */
HCU_DRV_GenerateMAC(plainText, 64, MSG_ALL, &cmacConfig);

/* Generate CMAC in four blocks */
HCU_DRV_GenerateMAC(plainText + 0, 16, MSG_START, &cmacConfig);
HCU_DRV_GenerateMAC(plainText + 4, 16, MSG_MIDDLE, &cmacConfig);
HCU_DRV_GenerateMAC(plainText + 8, 16, MSG_MIDDLE, &cmacConfig);
HCU_DRV_GenerateMAC(plainText +12, 16, MSG_END, &cmacConfig);

AES-CMAC 生成 MAC 签名，需要输入明文，明文长度，当前 block 类型，以及 MAC 的长度。​

如果验签 MAC，同样需要输入明文，明文长度，当前 block 类型，以及 MAC 的长度，另外还需输入签

名结果 MAC。​

line22 演示了如何在一个 block 中完成签名验签。​

1
2
3
4
5
6
7
8
9
10
11

12

13
14
15

16
17
18

19
20
21
22
23
24
25
26
27
28

line25~28 演示了当明文长度过大时，需要分多个 block 进行签名验签时的操作。​

HCU v2​

代码块​

status_t HCU_DRV_GenerateMAC(aes_algorithm_config_t * aesAlgCfg,
hcu_cmac_config_t *cmacConfig);

status_t HCU_DRV_AuthorizeMAC(aes_algorithm_config_t * aesAlgCfg,
hcu_cmac_config_t *cmacConfig);

/* Generate CMAC in one block */
encryptSwCfg.msgType = MSG_ALL;
HCU_DRV_GenerateMAC(&encryptSwCfg, &cmacConfig);

/* Generate CMAC in two blocks */
encryptSwCfg.dataInputPtr = plainText;
encryptSwCfg.msgLen = 32
encryptSwCfg.msgType = MSG_START;
HCU_DRV_GenerateMAC(&encryptSwCfg, &cmacConfig);

encryptSwCfg.dataInputPtr = plainText + 8;
encryptSwCfg.msgLen = 32
encryptSwCfg.msgType = MSG_END;
HCU_DRV_GenerateMAC(&encryptSwCfg, &cmacConfig);

代码逻辑与 HCU v1 版本类似，只是在分多个 block 的时候，需要改变配置。​

SHA​

HCU v1​

代码块​

typedef enum
{
 HCU_SHA_256 = 0x01U, /*!< SHA 256 algorithm */
 HCU_SHA_384 = 0x02U, /*!< SHA 384 algorithm */
} hcu_sha_type_t;

status_t HCU_DRV_GenerateSHA(const void *msg, uint16_t msgLen, uint32_t
totalLen,
 hcu_sha_type_t shaType, hcu_msg_type_t msgType,
void *result);

1

2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

1
2
3
4
5
6
7

8

9

status_t HCU_DRV_AuthorizeSHA(const void *msg, uint16_t msgLen, uint32_t
totalLen,
 hcu_sha_type_t shaType, hcu_msg_type_t msgType,
void *result, void *trueResult);

因为 SHA 是非对称加密，需要提前知道消息的总长度，所以 SHA 签名需要输入 消息，当前 block 长

度，消息总长度，SHA算法 (SHA-256/384)，当前 block 类型。​

验签也类似，输入 消息，当前 block 长度，消息总长度，SHA算法 (SHA-256/384)，当前 block 类

型，以及签名值，另外 MCU 可以将正确的签名值一并返回，即 trueResult.​

分 Block 与 CMAC 类似，不再赘述​

HCU v2​

代码块​

typedef struct
{
 uint32_t const *dataInputPtr; /*!< Specifies current processing data
input pointer */
 uint32_t *dataOutputPtr; /*!< Specifies current processing data
output pointer */
 uint32_t msgLen; /*!< Specifies the length of message */
 uint32_t totalLen; /*!< Specifies the total length of message
*/
 hcu_msg_type_t msgType; /*!< Specifies the type of message */
 hcu_sha_type_t shaType; /*!< Specifies the type of SHA */
} sha_algorithm_config_t;

status_t HCU_DRV_GenerateSHA(sha_algorithm_config_t * shaAlgCfg);

status_t HCU_DRV_AuthorizeSHA(sha_algorithm_config_t * shaAlgCfg);

与 AES 加密类似，SHA也有单独的配置结构体，只是少了密钥相关的参数，多了消息总长度，与 SHA

算法选择。

分 Block 与 CMAC 类似，不再赘述​

RSA​

代码块​

typedef struct
{

10

11

1
2
3

4

5
6

7
8
9
10
11
12
13

1
2

 uint8_t privateKeyLen; /*!< Specifies the words of
private key length */
 uint32_t d[FEATURE_HCU_RSA_MAX_WORD_LENGTH]; /*!< Specifies the private
key */
 uint8_t publicKeyLen; /*!< Specifies the words of
public key length */
 uint32_t e[FEATURE_HCU_RSA_MAX_WORD_LENGTH]; /*!< Specifies the public key
*/
 hcu_rsa_alg_t opLength; /*!< Specifies the length of
RSA operation */
 uint32_t n[FEATURE_HCU_RSA_MAX_WORD_LENGTH]; /*!< Specifies the N for RSA
*/
#if FEATURE_RSA_HAS_HARDWARE_KEY_LOAD
 bool rsaLoadHwPrivateKey; /*!< Specifies RSA if use
hardware private key */
 uint8_t rsaHwPrivateKeySlot; /*!< Specifies RSA hardware
private key select */
 bool rsaLoadHwPublicKey; /*!< Specifies RSA if use
hardware public key */
 uint8_t rsaHwPublicKeySlot; /*!< Specifies RSA hardware
public key select */
#endif /* FEATURE_RSA_HAS_HARDWARE_KEY_LOAD */
} hcu_rsa_config_t;

typedef struct
{
#if FEATURE_HCU_ECC_ENGINE
 hcu_ecc_config_t const *eccConfig; /*!< Specifies the ecc configuration */
#endif /* FEATURE_HCU_ECC_ENGINE */
#if FEATURE_HCU_RSA_ENGINE
 hcu_rsa_config_t const *rsaConfig; /*!< Specifies the rsa configuration */
#endif /* FEATURE_HCU_RSA_ENGINE */
} pke_user_config_t;

status_t PKE_DRV_Init(const pke_user_config_t * userConfig, pke_state_t
*state);

status_t HCU_DRV_EncryptRSA(uint32_t const *plainText, uint32_t length,
uint32_t *cipherText);

status_t HCU_DRV_DecryptRSA(uint32_t const *cipherText, uint32_t length,
uint32_t *plainText);

在使用 RSA 计算前，需要调用 PKE_DRV_Init 来为 RSA 选择参数，下面对其参数进行说明：​

1. privateKeyLen：私钥长度​

3

4

5

6

7

8

9
10

11

12

13

14
15
16
17
18
19
20
21
22
23
24
25
26
27

28
29

30
31

2. d：私钥​

3. publicKeyLen：公钥长度​

4. e：公钥​

5. opLength：选择 RSA-1024/2048/3072/4096​

6. n：RSA 的参数之一​

随后调用加密或解密 RSA 函数。​

需要注意的是，该 API 为 RSA_NO_PADDING 模式，即 RSA 计算对明文长度有限制，例如 RSA-

4096，则需要明文长度为 4096bit，即 512 bytes。若不足 512 bytes，需要自行补全，若超过 512

bytes，需自行切割。​

ECC​

代码块​

typedef struct
{
 hcu_ecc_alg_t opLength; /*!< Specifies the length
of ECC operation */
 uint32_t a[FEATURE_HCU_ECC_MAX_WORD_LENGTH]; /*!< Specifies the a of
ellipse */
 uint32_t b[FEATURE_HCU_ECC_MAX_WORD_LENGTH]; /*!< Specifies the b of
ellipse */
 uint32_t p[FEATURE_HCU_ECC_MAX_WORD_LENGTH]; /*!< Specifies the p of
ellipse */
 uint32_t gx[FEATURE_HCU_ECC_MAX_WORD_LENGTH]; /*!< Specifies the Gx of
base point G */
 uint32_t gy[FEATURE_HCU_ECC_MAX_WORD_LENGTH]; /*!< Specifies the Gy of
base point G */
 uint32_t n[FEATURE_HCU_ECC_MAX_WORD_LENGTH]; /*!< Specifies the n of
ellipse */
} hcu_ecc_config_t;

typedef struct
{
 uint32_t *pointX; /*!< Pointer to the X of point */
 uint32_t *pointY; /*!< Pointer to the Y of point */
} hcu_ecc_point_t;

typedef struct
{
#if FEATURE_HCU_ECC_ENGINE
 hcu_ecc_config_t const *eccConfig; /*!< Specifies the ecc configuration */
#endif /* FEATURE_HCU_ECC_ENGINE */

1
2
3

4

5

6

7

8

9

10
11
12
13
14
15
16
17
18
19
20
21
22

#if FEATURE_HCU_RSA_ENGINE
 hcu_rsa_config_t const *rsaConfig; /*!< Specifies the rsa configuration */
#endif /* FEATURE_HCU_RSA_ENGINE */
} pke_user_config_t;

status_t PKE_DRV_Init(const pke_user_config_t * userConfig, pke_state_t
*state);

status_t HCU_DRV_ECCPointMul(uint32_t const *K, hcu_ecc_point_t const *pointP,
 hcu_ecc_point_t *point);

status_t HCU_DRV_ECCPointAdd(hcu_ecc_point_t const *pointP, hcu_ecc_point_t
const *pointQ,
 hcu_ecc_point_t *pointR);

同样在 ECC 计算中，需要调用 PKE_DRV_Init 来为 ECC 选择曲线参数，ECC 参数与上文 ECC 章节中介

绍的参数一致，只是多了个 ECC 长度选择，ECC-128/192/256。​

ECC 提供了点乘运算与点加运算，供用户自由发挥。​

PKE 计算​

代码块​

status_t HCU_DRV_PreCalculate(uint32_t const *N, uint32_t *result);

status_t HCU_DRV_GetPKESub(uint32_t const *A, uint32_t const *E, uint32_t
*result);

status_t HCU_DRV_GetPKEAdd(uint32_t const *A, uint32_t const *E, uint32_t
*result);

status_t HCU_DRV_GetPKEDouble(uint32_t const *A, uint32_t *result);

status_t HCU_DRV_GetPKESquare(uint32_t const *A, uint32_t const *R2, uint32_t
*result);

status_t HCU_DRV_GetPKEMultiply(uint32_t const *A, uint32_t const *E, uint32_t
const *R2, uint32_t *result);

status_t HCU_DRV_GetPKEInverse(uint32_t const *A, uint32_t const *N, uint32_t
const *R2, uint32_t *result);

void hcu_pke_test(void)
{

23
24
25
26
27
28

29
30
31
32
33

34

1
2
3

4
5

6
7
8
9

10
11

12
13

14
15
16

 pkeUserConfig.eccConfig = &eccConfig;
 PKE_DRV_Init(&pkeUserConfig, &pkeState);

 /* Pre-calculation */
 HCU_DRV_PreCalculate(eccConfig.p, R2);
 /* (A + A) % N */
 HCU_DRV_GetPKEDouble(eccConfig.gx, result);

 /* (A + E) % N */
 HCU_DRV_GetPKEAdd(eccConfig.gx, eccConfig.gy, result);

 /* (A - E) % N */
 HCU_DRV_GetPKESub(eccConfig.gx, eccConfig.gy, result);

 /* A * A * R % N */
 HCU_DRV_GetPKESquare(eccConfig.gx, R2, result);

 /* A * E * R % N */
 HCU_DRV_GetPKEMultiply(eccConfig.gx, eccConfig.gy, R2, result);

 /* 1 / A % N */
 HCU_DRV_GetPKEInverse(eccConfig.gx, eccConfig.p, R2, result);
}

此外还提供了一系列大数据的运算，供用户 DIY 加密算法。​

ECDSA​

代码块​

typedef struct
{
 uint32_t const *privateKey; /*!< Specifies private key for
ECDSA, ignore if during signature verification */
 hcu_ecc_point_t *publicKey; /*!< Specifies public key
generated by private key by ECC */
 uint32_t const *K; /*!< Specifies random number K
for ECDSA signature generate, ignore if during signature verification */
 hcu_sha_type_t shaType; /*!< Specifies the type of SHA */
 uint32_t msgLen; /*!< Specifies the message length
for ECDSA. */
 uint32_t const *message; /*!< Specifies the message for
ECDSA. */
 uint32_t *hashResult; /*!< Specifies the hash result
(little endian) for message. */

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

1
2
3

4

5

6
7

8

9

 uint32_t *R; /*!< Specifies the R of signature
pair (r, s) for ECDSA */
 uint32_t *S; /*!< Specifies the S of signature
pair (r, s) for ECDSA */
} hcu_ecdsa_config_t;
#endif /* FEATURE_HCU_ECC_ENGINE */

status_t PKE_DRV_Init(const pke_user_config_t * userConfig, pke_state_t
*state);

status_t HCU_DRV_ECDSA_GenerateSignature(hcu_ecdsa_config_t * ecdsaCfg);

status_t HCU_DRV_ECDSA_VerifySignature(hcu_ecdsa_config_t * ecdsaCfg);

同样，使用 ECDSA 算法仍需要调用 PKE_DRV_Init 来为 ECC 选择曲线参数。另外关于 ECDSA 的参数

说明如下：

1. privateKey：私钥，在签名时需要输入，在验签时不需要输入​

2. publicKey：公钥，公钥是曲线上的一个点，在签名时不需要输入，在验签时需要输入​

3. K：随机数 K，仅在签名时需要输入，可通过 TRNG 来产生一组随机数​

4. shaType：SHA 算法选择 SHA-256/384

5. msgLen：消息的长度​

6. message：消息​

7. hashResult：消息的摘要内容，为方便用户 debug，特地将消息摘要返回​

8. (R, S)：签名对​

注意：不同的随机 K 仅对生成的签名对有影响，对验签结果无任何影响，但尽量保证每次签名时使用

的 K 不同，依次来保护私钥信息。​

各系列芯片对比

功能对比

10

11

12
13
14
15

16
17
18
19

计算效率对比

YTM32B1MC0 HCU 效率​

80MHz FIRC 主频，各个加密算法的速度比较​

YTM32B1ME1 HCU 效率​

120MHz PLL 主频，各个加密算法的速度比较​

GCC 优化等级-O1 (-Ofast 还能少10us左右)​

YTM32B1ME0 HCU 效率​

120MHz PLL 主频，各个加密算法的速度比较​

YTM32B1HA0 HCU 效率​

200MHz PLL 主频，各个加密算法的速度比较​

YTM32B1MD2 HCU 效率​

80M PLL 主频​

注意：以下测试结果单位均为 us，RSA 加密公钥均为 0x10001，ECDSA 仅支持 ECC-256 曲线 + SHA-

256​

Flash Cache​

RAM Cache​

Flash Cache​

RAM no

Cache​

Flash no

Cache​

RAM Cache​

Flash no

Cache​

RAM no

Cache​

Flash Cache DMA

Enable​

RAM Cache​

AES-ECB 1kB​ 159​ 160​ 206​ 225​ 128​

AES-ECB 4kB​ 599​ 602​ 794​ 878​ 397​

AES-CBC 1kB​ 162​ 162​ 209​ 231​ 125​

AES-CBC 4kB​ 611​ 604​ 803​ 894​ 394​

AES-CMAC 1kB​ 92​ 110​ 162​ 97​ 90​

AES-CMAC 4kB​ 327​ 395​ 613​ 342​ 262​

SHA-256 1kB​ 90​ 120​ 138​ 162​ 77​

SHA-256 4kB​ 319​ 430​ 513​ 606​ 186​

ECC-192 点加​ 2324​ 2428​ 2888​ 2963​ 2327​

ECC-192 点乘​ 268​ 282​ 321​ 334​ 270​

ECC-256 点加​ 4079​ 4211​ 4804​ 4894​ 4082​

ECC-256 点乘​ 442​ 458​ 505​ 515​ 444​

ECC-384 点加​ 7406​ 7544​ 8160​ 8257​ 7409​

ECC-384 点乘​ 1066​ 1088​ 1141​ 1158​ 1068​

RSA-1024 加密​ 234​ 234​ 241​ 242​ 234​

RSA-1024 解密​ 11460​ 11460​ 11473​ 11473​ 11460​

RSA-2048 加密​ 855​ 855​ 873​ 874​ 857​

RSA-2048 解密​ 86008​ 86008​ 86035​ 86035​ 86007​

RSA-3072 加密​ 1917​ 1917​ 1942​ 1943​ 1918​

RSA-3072 解密​ 277092​ 277092​ 277132​ 277133​ 277090​

RSA-4096 加密​ 3347​ 3347​ 3381​ 3381​ 3348​

RSA-4096 解密​ 657466​ 657466​ 657520​ 657520​ 657466​

ECDSA 1kB 签

名​

9023 ​ 9328 ​ 10596 ​ 10819 ​ 9023 ​

ECDSA 1kB 验

签​

9445 ​ 9670 ​ 10953 ​ 11200 ​ 9445 ​

ECDSA 4kB 签

名​

9258 ​ 9649 ​ 10967 ​ 11263 ​ 9258 ​

ECDSA 4kB 验

签​

9677 ​ 10008 ​ 11323 ​ 11644 ​ 9677 ​

