SDK A HCU RIBSMA (Z)
RS

Config Tool Version: 2.7.6

YTM32B1MD2 SDK version: 1.3.2

e

Al

FAF YTM32B1MD24 #7118 T RSA 55 ECC, A FEE3T AES, SHA, RSA, ECC#TRIBMRAML
BH, LA Demo R{AIfEERE,

FIMEEM LT 2 RIS HNEIETNEENILE, UREEMEITLL

1[[13

AES

AES: B4z A& (Advanced Encryption Standard)
WIREEAME (INEFHEREAERNEA)

AES MXIRKEREE N 128 i, ZAKENTILIRE128, 192 5256 i1, XIFMAIMZRHE10. 12,
143, #LLIRME, AES-256 WL LM &meE, AES-128 BIMEER S,

MNZERAZAREAN FEFf.

Key K Key K

h 4 Y

Transfer
CipherText C » AES Decrypt > PlainText P

Y

PlainText P > AES Encrypt

Sender Receiver

ECB
B3 AstE T Electronic Codebook

HEPENTERN, TZEXT, 8—TAXRNNBHLETLMMI, EARATIN. REEMBREK
1E, MBI LHITHT,

ECB ERX—fx RiEA T/ NIEENFHERNR2MRIF, HIINEREFRF.

Key

Key

=
o [HE

e BFMFHTHE

Plaintext0

Y

block0 cipher

encryption

Ciphertext0

Key

Plaintext1

Y

block1 cipher

encryption

Ciphertext1

Key

Plaintext2

Y

block2 cipher
encryption

Ciphertext2

Electronic Codebook (ECB) mode encryption

Ciphertext0

A 4

hlock0 cipher

decryption

Plaintext0

Key

Ciphertext1

Y

block1 cipher

decryption

Plaintext1

Key

Ciphertext2

A A

hlock2 cipher
decryption

Plaintext2

Electronic Codebook (ECB) mode decryption

7 =

o MREMYBASCRET NN

CBC

FH 4R §EEIE T Cipher Block Chaining

SERAEERNESOR, AtREMRE, LRI 2R,

N7 7R ECB iR, SIAYIAMEEIV, BILARLEERFRIBASORIGER N E R RE SR, IV 1EA

BT E,

FPlaintext0

Initialization
Vector (IV)

Key ——»

VA
\J

Y

block0 cipher
encryption

Plaintext1

A

Ciphertext0

Cipher Block Chaining (CBC) mode encryption

Ciphertext0

Initialization
Vector (IV)

Key ———»

) 4
M
LV

>

blockO cipher
decryption

Y

Plaintext0

Cipher Block Chaining (CBC) mode decryption

Key

>

h 4

block1 cipher
encryption

S5 - AXRHIRE, BENE—TBASURMERI—1NEASCRFRINE th Y& STIR1E
mWo RBEMBIRIGE, MBI2HIT, BERUHIT

Plaintext2

—

Y

Ciphertexti

Ciphertext1

Key

VAR
“V

A 4

block1 cipher
decryption

A 4

Plaintext1

Key

w1
VY

Y

block2 cipher
encryption

A

Ciphertext2

Ciphertext?

Key

w1
N

A 4

block2 cipher
decryption

Y

Plaintext2

R

o TeHER

TR

o TEHITITE, %R LARIECB,

CTR
ITHE2EI{ Counter

AEFE—IBENEF, XIMNEFRAREMRZENREBMBAXYXSEHNEREFIEREX, HEF—R
B, XMNEAXERRRE, Z205FE, MBATUHITMNE, CTREKRESE:. Nonce fENEL.
Counter 111281238, Nonce FENEFICounter 1H2S (AR B EIT 125

Nonce Counter Nonce Counter Nonce Counter
c59bcf35... 00000000 c59bcf35... 00000001 c59bcf35... 00000002
blocko cipher blockl cipher block2 cipher
Key > encryption Key > encryption Key ——» encryption
Plaintext0 > Plaintext1 > Plaintext2 >
h 4 Y A4
Ciphertext0 Ciphertext1 Ciphertext2

Counter (CTR) mode encryption

Nonce Counter Nonce Counter Nonce Counter
c59bcf35... 00000000 c59bcf35... 00000001 c59bcf35... 00000002

Key) block0 cipher Key block1 cipher Key block2 cipher

decryption decryption decryption
Ciphertextd > Ciphertext1 > Ciphertext2 >
¥ Y h 4
Plaintext0 Plaintext1 Plaintext2

Counter (CTR) mode decryption

CCM

CCM &=, (Counter with CBC-MAC)

CCM B & fEACBC-MAC fRIUKINIELSaiml, PASEACTR RIUKMEM, CBC-MAC SLFR ERt2st
HEMERACBCEAHITNE, BIEXN&REIRIENINEE, MAC EEIAIER, MAC{EREERPA
XAMERITERF/HN, AREEFNEZABEATERRAN, EAMAC AILULEKRSMERRSZ
BRE

o[e]

input block 0 input block 1 input block 2 input block m
CIPHk CIPHK CIPHK CIPHK
output block 0 output block 1 output block 2 output block m

laintext 1
s0 P %
ciphertext 1

B1 Bt MSBTlen(S0)

MSBTlen(Yr)
, kD 5 ah e wan 5
Yo k-1 Yk Ykt Y1 Vi
CIPHK CIPHK f-—-"-e- ‘ GCIPHK A ‘

CIPHK ClPHk [7777777 CIPHK ag

Counter with CBC-MAC (CCM) mode encryption

e A A)

input block 0 input block 1 input block 2 input block m
CIPHk CIPHk CIPHK CIPHk
output block 0 output block 1 output block 2 output block m

laintext 1
o [
cipheriext 1

B1 Bt MSBTlen(So)

r@ = h@ © D L
Yo Vit | Y Y1 Yt e
CIPHK CIPHK oo g CIPHK ’ 129

CIPHK CIPHK [CIPHK

Counter with CBC-MAC (CCM) mode decryption

¥3iEB0. Bl...... « Bn, 8416 MF7T5, BO. BlBERELSN, BARBIFESZEMRXMIN, LABO MM
BERERNIV 27IX$BLB2....... BnICBCit8R, ER5DBRIAXMFN, FT—1MERSIHHSBVE
Ctr0 ICTR IEZERMFNFtag, BAXPL. P2...... « Pnf#CTR INEFFZEZXCL, C2...... « Cno

CMAC
CMAC # = (Cipher-based MAC)

SRAFERHERINES, XFRMNZEEM, MACBC-MAC B, ECMAC#BRERERMIEL: M0
FRNEEKEEFTBlock NEE#IE, &EMBlock M_n FEEEK1 FHEHITRIE,; NRBWNAKE
BEREARFTFBlock WEHE, &/GHIBlock M_n FHFEATEI—PBlock WK/, 5K2]R8, BT
WIE, &EFENAMERET,

M1

M2

M1

M2

CIPHK

CIPHK

CIPHK

CIPHK

CIPHK

MSBTlen

CIPHK

MSETlen

lllustration of the two cases of MAC Generation

WNEAK, kb FERKL 5K2, 20T
1. BZBKNESRNRNBEEIL

2. KL BIWTANSEL: NRLWESERUN0, WKL: =L E#1; &N, K1FFconst_ Rb 5
E%1 UL 25

3. RBIENMTARSH: NRKLWESERAIN0, WK2: =K1 £#%11iI; B, K2FFconst_Rb
571 {UBIK1 F8o

const_ Rb HEEE, R5RA/NEX, 128bit Bfconst_ Rb=012010000111, 64bit Bfconst_Rb =
05911011

GCM
GCM#ZZ (GMAC CTR Mode)

FHITCTRINE, FEIMVENSS5GMACTK AL IZFRIMINE B it 2 4EMZR N, FEIMACE, &
&, BXERESWEIEX. IV (HEECTRIIIEE) « MACE,

Y0 +1 v1 +1 Y2 - +1 | Yn
input_block O input_block 1 input_block 2 input_block n
Aes256_Encrypt_one Aes256_Encrypt_one Aes256_Encrypt_one Aes256_Encrypt_one
_word _word _word _word
output_block O output_block 1 output_block 2 output_block n

ciphertext 1 ciphertext 2 ciphertext n

¥

X0

A A
\ﬁ N A -
X1
GF128_mult(H) GF128_mult(H) GF128 mult(H) |==-----=14 GF128 mult(H)
AAD len(A) || len(C)

GF128_mult(H)

ﬁ

tag

E(K,YO)

GMAC
GMAC (Galois Message Authentication Code)

GMAC 2ET AES 1 GHASH Va3, (XATFIMENSEZE. EFA GCM ERRVINIERS, HE B
LR REEHRE R —MAIETE (MAC) , KUISIESIERI R MM RE L,

AR, GCMREIN MAC BIAXEIENZS, FRELS GMAC HER—EBASE, ZRZFEH MACH
R,

i input_block 0

input_block 0

CIPH;
CIPH,

output_block 0
E(K.YO0)

tag

data 1 data 2

output_block O

H E’ !
H GF128_mult(H) ‘ | GF128 mult(H) |— GF128_mult(H) |---------}

GF128_mult(H)

GF128_mult(H)

SHA

REFHHIEE (FiEB: Secure Hash Algorithm, B ASHA) B—MNEBEGIK K&, FIPSFR
INERNZEE5E L, BEIHBEH— 1M EHEMAMNNEIRN, KEBEMNZERSRE (XIVEEHRE) AR
Z. BERAHEEARE, EMNNAIARRFEREMNTNERES,

SHAREH A NE X, 932 SHA-1. SHA-224 . SHA-256 . SHA-384 , #1 SHA-512 ,
HEEEZRZEE (NSA) Frigit, #FHREEERINESHEARRREE (NIST) %% ; EXEENBEFR

https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2F%25E5%25AF%2586%25E7%25A0%2581%25E6%2595%25A3%25E5%2588%2597%25E5%2587%25BD%25E6%2595%25B0
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FFIPS
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2F%25E6%2595%25A3%25E5%2588%2597%25E7%25AE%2597%25E6%25B3%2595
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FSHA-1
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2F%25E7%25BE%258E%25E5%259B%25BD%25E5%259B%25BD%25E5%25AE%25B6%25E5%25AE%2589%25E5%2585%25A8%25E5%25B1%2580

o EUEBRNHIAN SHA-2 » SHA-1 EFZLREWMERT AEM, 83FE TLS M SSL. PGP

SSH. S/MIME # IPsec , B#fIANRE MD5 (BEERZHIH AERANZFZERE) HNEHE, E

SHA-1 MZ2MNSHEEZRERTERLE, BAESHARBIN SHA-2 BRNKE, BHEAR
SHA-1 EA ENAMEM, EltELEAFBREBEEMECHNREE L,

HMAC

HMAC Hash-based Message Authentication Code, M7 8 S IAIERS.

HMACRZAEXMNIERIZEHRINES, HMACEEMARERE, U— 1 EAN—ER N
N>, ER—MERREEFENEL,

HMACHBIHREHashERFI&E A, HMACTE]LUER ZMEmEyI, HanEASHA-1, MHpHMAC-
1, FEASHA- 25685 &%, MHMHMAC-256,

RSA

RSA (Rivest Shamir Adleman)

RSA BIFWTRE L, BRASMA, MESHEZRIZNTEFR. HIAHE RSA-
1024/2048/3072/4096

BA3C 883

INH l T F448
3 RSAHDE: RSARE: D
; (ﬁ}tﬂﬂxE modD G}i!&%:‘m mod@ .
T N
Y

BX EX

RSA Z5A%ERK

HERNERANERD My

F AR REMITEAZH D F g WM n = pg

RS EHE m=(p—1)(g— 1), XEB m }n KERHIREL
HE—1Mhe(l <e<m), HRE ged(m,e) =1 (B) e IMER)
itEe EEm s FWFTd (BIHRE edmodm = 1)

Eit, NAMRRPERSE: (n,e) AR, (n,d) HFLH

=

EN A

https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FTLS
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FSSL
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FPGP
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FSSH
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2FMD5
https://link.jianshu.com/?t=https%3A%2F%2Fbaike.baidu.com%2Fitem%2F%25E5%2593%2588%25E5%25B8%258C%25E8%25BF%2590%25E7%25AE%2597
https://zhida.zhihu.com/search?content_id=162808958&content_type=Article&match_order=1&q=SHA-1&zhida_source=entity
https://zhida.zhihu.com/search?content_id=162808958&content_type=Article&match_order=1&q=SHA-256&zhida_source=entity

RSA N&

SHFBAX z , AR (n,e) 3tz ERITIZ, MBIz RIERHT (FRBMNIEME ASCIBERE
unicode {g) , AEEITERITEL , HRy mEEX;

y = z°modn

RSA fi#%2
SWFBEXY , AT (n,d) 5ty #HTRBHIEMMBLM, AESITERIE;

x = ydmodn

ECC

ECC (Elliptic Curves Cryptography)

ECCEZLEENMREIL AR, FEEME ML FRI—1 R, B “"RiI” M “Rk” #BEKX
HITHE L RBZER, REEIINSKIEANMBLER,

REFENLBECCHZEZRIE, UM ECDSA IR
ECC &N

HAZFEOMEMEERESINE, v° = 2° + az + b B—LFILUBEMBOKERRLE, the
RAERN—K,

SHrdEiEEp(a b)FTAY® = 2° + az + b(modp), =,y € [0,p], pAFHL
IZHIE X TERNIFR, IR NHE THIEHRINTFp(pAFENRIERE a. b, EXKHELLTE
3a + 270 £ 0

ECC IS HFEE S

e p: AMRE

° a: ZMN—RERE

e b: ZMABHRR

e G: BEm

e n: WEEIHHZAIFER

HantL 45 Bitcoin MY secp256K1 XIS 0T :

2.4.1 Recommended Parameters secp256k1l

The elliptic curve domain parameters over F, associated with a Koblitz curve secp256kl are
specified by the sextuple T' = (p,a,b, G, n, h) where the finite field I, is defined by:

p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE
FFFFFC2F
_ 2256_232_29_28_27_26_24_1

The curve E: y* = 2* + azx + b over F, is defined by:

a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000

b = 00000000 00000000 00000000 00000000 00000000 00000000 00000000
00000007

The base point ¢ in compressed form is:

G = 02 79BE66TE FODCBBAC 55A06295 CES870BO7 029BFCDBE 2DCE28DS
S59F2815B 16F81798

and in uncompressed form is:

G = 04 79BE66TE FODCBBAC 55A06295 CES870BO7Y 029BFCDB 2DCE28DS
59F2815B 16F81798 483ADATT 26A3C465 S5DA4FBFC OE1108A8 FD17E448
A6855419 9C47DOSF FB10D4E8

Finally the order n of G and the cofactor are:

n = FFFFFFFF FFFFFFFY FFFFFPFFF FFFFFFFE BAAEDCEG AF48A03B BFD25ESC
D0364141
h = 01
ECC =10

WEEER L LRI =AE00, HIFRMAIRSHILITRIARM, FINTES, HERLZ RS, P, Q
180, BXEP, QRREVELZ, SHEMZMERZNS R, BR' EXHMTRAIR R BMGM ABI0RVES
®R. R=P+Q

R=P+Q_

ECC =3
HEBENRREESHEHER—R. FIMTE, HERFE 2 PHLER, FEEP REXTHREH
ZM)4k, SHEMZAERNR R, BR EXHNTRRIR REMGRENER, R=2"P; NRFE
BLENE, AINEEHE 11*P, NER
11«P=8%«P+2%*xP+P=2%x(4xP)+2xP+P=2+x(2+(2+P))+2«xP+ P,

2P, 4P, 8P WUERALITE LR, MEIRRHIT=M, BIAFE 11*P

R

l_.R:P+P

ECDSA
ECDSA (Elliptic Curve Digital Signature Algorithm)

ECDSA 2—METHEpLZ3% (Elliptic Curve Cryptography, ECC) BISFEERZEE, HLUE
E8%, BIRIsERYESRIINE,

NEXS ECDSA B AR T RAR

ERRTASTAH

LA

— M REERNARKIED, BR1 <=d<=n-1, Hfn ZHEBZHM,
YN

ERMAdERARAQ = dx G, Hh G RMENES

=8

1. HEHEM Hash &, ERBAEE (190 SHA-256) STHEE M#TiHE, SEHRNEE
h = Hash(M)

MILn-1] SEEREFRER— I k, ZERFEZMLERN, FEitE, BRERIEE—RERE
Bk, EERARB k RERIEFAAR WO ER,

3. 2EERE, R=Fk+G, HhGR2MEMES, iR SOEAHE, B r = Romodn
4. #t8s=k ' x(h+dxr)modn, Heh k' 2k WFEYTT

5. &3 (r, s) EEERANNTE

6. I (r, s) , FREEM, 52 Qa—RRIEAENSHIS

N

1. HEE B Hash {8, BABARE (B SHA-256) XHBE M#TiteE, S EBNRE

o o1 o W N

h = Hash(M)

FSEEEREN, BRESEX (), s) , BMEYE [Ln] SEX

HEMTv =s ‘'modn, vy =vi x hmodn, vs = v * rmodn

HEMER P=v2xG+uv3 xQ, HR G ZHENESR, Q2L

REWIEr @5 R P Sp9ELtR, Bl rmodn = Pymodn

IERLT, MIRTVESBHAIEM, SMWHMIERE, £23Y, HEHARFEDE —TIHREN

ER

EZEREZBFINENE~ZEE L TEHSML, SM2, SM3, SM4, BRizEREH(ZE

SM4-ECB 5%, HRERBEAYAZSF. FRETNIEMIR4 7.

SM1 ASIFRINE, EMPBBESAESHEY, ZEEARALH, ARZEELN, SEBEIMECHNE
O#HITEA,

SM2AIEXTIRINE, BFECC, ZBEEAH., BT ZEERTECC, HMEHSZRESWIBERNE
E#IRFRSA. ECC 25611 (SM2RAMFLEECC 256{iM—Fh) LLIBELLRSA 204815, {8Bit
BEERTFRSA,

SM3HEHE., AJURAMDSEANTLEIER, ZRIEABE A, RILLERIN2561L,
SM4 L& F/IFMIRERN D HBIER R, WIRNE, ZRKEMDHEKEY 1281,

R

BRORZFNMEEEARTL4ERE, B HCU (Hardware Cryptography Unit) thE%K, Baigmt
ARZASHY HCU 3Rzh, REERXS.

HCU #3581

Irofsitatus_t HCU_DRV_Init(const hcu_user_config_t * userConfig, hcu_state_t
*state);

VIR EE ST T AN T IhRE:

L. XPRESHLEHITHIEK

2. REAXSEXNZRAI, BRIAFKIR

3. ECEFAXSEXBEIERIZS I, 18, Fkfor DMA

AES ZAINE;
HCU vl
R

(ASEEZS

1 status_t HCU_DRV_LoadUserKey(const void xkey, hcu_key_size_t keySize);

BEERENZSR, BEIRGHAEREERMEE HCU 53|1Z#iEE,

P E TR

(AREES
1 status_t FLASH_DRV_LoadAESKey(uint32_t instance, uint32_t address);
Z ocooooo

3 static inline void HCU_SetKeySize(hcu_key_size_t size);

£\ AES Z$A7E HCU_NVR Hpy7efgitiil, MEE@IEAREAMEE HCU 5IZM#IzE, R HCU
XFARKENZAKE, FEIMIMKETRAKE. (AES-128/192/256)

HCU v2
BIRMBEZRHES MINZRRAEE, FFEZIMINEAA AP ESLIEHAME,

AES-ECB
HCU vl

HADIR

1 status_t HCU_DRV_EncryptECB(const void xplainText, uintl6_t length, void

*cipherText) ;

3 status_t HCU_DRV_DecryptECB(const void *cipherText, uintl6é_t length, void
*plainText) ;

IXEpFEMH T AES-ECB INE SRR, HNE, WHEBMAPX, SHXKE, BIRSEIRAEY
B HF—REABANBAXKESR, MNRAXKEBHRE], 5J52%1 block #1TMNE,

HCU v2

(ASEEZS

typedef struct
{

uint32_t const *datalnputPtr; /x!< Specifies current processing data

input pointer */

4 uint32_t *dataOutputPtr; /*1< Specifies current processing data
output pointer */
uint32_t msglLen; /*!< Specifies the length of message */
hcu_msg_type_t msgType; /*1< Specifies the type of message */
bool hwKeySelected; /*x!1< Specifies hardware key or software key
selected */
8 uint32_t hwKeySlot; /*!< Specifies index of hardware key in
HCU_NVR */
9 uint32_t const x swKeyPtr; /*1< Specifies current software key */
10 hcu_key_size_t keySize; /*!< Specifies the key size */

11 } aes_algorithm_config_t;
12

13 status_t HCU_DRV_EncryptECB(aes_algorithm_config_t * aesAlgCfg);
14

15 status_t HCU_DRV_DecryptECB(aes_algorithm_config_t * aesAlgCfg);

HCU v2 R ASIXEhTE AES-ECB IIZ TR EE N— MG, TEXXMEFHHITHRRE:
datalnputPtr: 0%, HIFEZHIEIE
[EHILER

7.

dataOutputPtr: %G, HEZE
msglen: MABIENKE
msgType: SHRIEIEIRAVER, ERSHRIESE—Tblock, E&fE—1 block, E(HIEIAY block
hwKeySelected: EEIEZFMEFEHZTH

hwKeySlot: FEHZEANFSIS, BNEFIMNE HCU_NVR FEJ14A%EA

swKeyPtr: {48

keySize: ZHKE

e S o o R A o

AES-CMAC

HCU vl
(ASEEN
1 typedef enum
2 {
3 MSG_START = 0x02U, /*!< Start of a message block */
4 MSG_END = 0x01U, /*!< End of a message block */
5 MSG_ALL = 0x03U, /*!1< ALl message in one block */
6 MSG_MIDDLE = 0Ox00U, /*!1< ALl message in one block */
7 } hcu_msg_type_t;
8
9 typedef struct
10 {
11 uint8_t *macPtr; /*!< Specifies the mac used for the CMAC operation
*/
12 uint8_t maclLen; /*1< Specifies the length of the mac used for the

CMAC operation */
13 } hcu_cmac_config_t;

14

15 status_t HCU_DRV_GenerateMAC(const void *msg, uintl6_t msglLen, hcu_msg_type_t
msgType,

16 hcu_cmac_config_t *cmacConfig);

L7 ocoooo

18 status_t HCU_DRV_AuthorizeMAC(const void *msg, uintl6_t msglLen, hcu_msg_type_t
msgType,

19 hcu_cmac_config_t *cmacConfig);

20

21 /* Generate CMAC in one block */

22 HCU_DRV_GenerateMAC(plainText, 64, MSG_ALL, &cmacConfig);

23

24 /* Generate CMAC in four blocks */

25 HCU_DRV_GenerateMAC(plainText + 0, 16, MSG_START, &cmacConfig);
26 ~ HCU_DRV_GenerateMAC(plainText + 4, 16, MSG_MIDDLE, &cmacConfig);
27 HCU_DRV_GenerateMAC(plainText + 8, 16, MSG_MIDDLE, &cmacConfig);
28 HCU_DRV_GenerateMAC(plainText +12, 16, MSG_END, &cmacConfig);

AES-CMAC £ MAC &%, TEWNIAX, BBXKE, Z5] block 22, L& MAC BIKE,

NRIEF MAC, FIFFRERMANAN, BAXKE, ZHaiblock K2, LKk MACKHKE, FINEFEWAE
BER MAC,

line22 &R T 4NfEI7E— block FREMERIE

line25~28 /&R T HEAXKET KR, FEDZ1 block #ITEZRINTZITHIREIF,

HCU v2

HEGIR

1

w

© 0o N o O h

10
11
12
13
14
15
16
17
18

status_t HCU_DRV_GenerateMAC(aes_algorithm_config_t * aesAlgCfg,

hcu_cmac_config_t *cmacConfig);

status_t HCU_DRV_AuthorizeMAC(aes_algorithm_config_t * aesAlgCfg,
hcu_cmac_config_t *cmacConfig);

/* Generate CMAC in one block */
encryptSwCfg.msgType = MSG_ALL;
HCU_DRV_GenerateMAC (&encryptSwCfg, &cmacConfig);

/* Generate CMAC in two blocks */
encryptSwCfg.datalnputPtr = plainText;
encryptSwCfg.msglLen = 32

encryptSwCfg.msgType = MSG_START;
HCU_DRV_GenerateMAC (&encryptSwCfg, &cmacConfig);

encryptSwCfg.datalnputPtr = plainText + 8;
encryptSwCfg.msglLen = 32

encryptSwCfg.msgType = MSG_END;
HCU_DRV_GenerateMAC (&encryptSwCfg, &cmacConfig);

E3iZES HCU vl RRAERIK, R2ESZ1 block BB R, FENERE.

SHA
HCU vl
ARIGIR
1 typedef enum
2 {
3 HCU_SHA_256 = 0Ox01U, /*1< SHA 256 algorithm */
4 HCU_SHA_384 = 0x02U, /*1< SHA 384 algorithm */
5 } hcu_sha_type_t;
6
7 status_t HCU_DRV_GenerateSHA(const void *msg, uintl6_t msglen, uint32_t
totallLen,
8 hcu_sha_type_t shaType, hcu_msg_type_t msgType,

void *result);

10 status_t HCU_DRV_AuthorizeSHA(const void *msg, uintl6_t msglLen, uint32_t
totallen,

11 hcu_sha_type_t shaType, hcu_msg_type_t msgType,
void *result, void *trueResult);

E7 SHA BIEIRNE, FTERAAMEBEENEKE, FRIUASHAZZFEZRAN HE, Z#block K
rg‘_) 7 n_,\lelg\'l'—trg) SHA§7£ (SHA-256/384), J:'IHU block 3'3520

WM, MNEHE, Haiblock KE, JHESKE, SHAR X (SHA-256/384), g block 2
B, UNRERZE, B9 MCU AL ERMNERE—FHIRE], B trueResult.

4 Block 5 CMAC £, F~EER

HCU v2
(AGEES
1 typedef struct
2 {
uint32_t const xdatalnputPtr; /*!/< Specifies current processing data
Tnput pointer */
4 uint32_t *dataOutputPtr; /*1< Specifies current processing data
output pointer */
uint32_t msglLen; /*1< Specifies the length of message */
uint32_t totallLen; /*x!1< Specifies the total length of message
*/
hcu_msg_type_t msgType; /*!< Specifies the type of message */
hcu_sha_type_t shaType; /*1< Specifies the type of SHA */
} sha_algorithm_config_t;
10

11 status_t HCU_DRV_GenerateSHA(sha_algorithm_config_t * shaAlgCfg);
12
1125 status_t HCU_DRV_AuthorizeSHA (sha_algorithm_config_t * shaAlgCfg);

~

5 AES INZRZEM, SHAERIMMERESEWER, B2/ TERPERXNESE, 2T HESKE, 5SHA
BIAERE,
4 Block 5 CMAC 2, FAEBEER

RSA

HADIR

1 typedef struct
2 {

3 uint8_t privateKeylLen; /*1< Specifies the words of
private key length */

4 uint32_t d[FEATURE_HCU_RSA_MAX_WORD_LENGTH]; /*!/< Specifies the private
key x/

5 uint8_t publicKeylLen; /*x!1< Specifies the words of
public key length */

6 uint32_t e[FEATURE_HCU_RSA_MAX_WORD_LENGTH]; /#!< Specifies the public key
*/

7 hcu_rsa_alg_t oplLength; /*x1< Specifies the length of
RSA operation */

8 uint32_t n[FEATURE_HCU_RSA_MAX_WORD_LENGTH]; /*!< Specifies the N for RSA
*/

9 #if FEATURE_RSA_HAS_HARDWARE_KEY_LOAD

10 bool rsalLoadHwPrivateKey; /*1< Specifies RSA if use
hardware private key */

11 uint8_t rsaHwPrivateKeySlot; /*!< Specifies RSA hardware
private key select */

12 bool rsalLoadHwPublicKey; /*1< Specifies RSA if use
hardware public key */

13 uint8_t rsaHwPublicKeySlot; /*!< Specifies RSA hardware

public key select */
14 #endif /* FEATURE_RSA_HAS_HARDWARE_KEY_LOAD *x/
15 } hcu_rsa_config_t;

16

17 typedef struct

18 {

19 #if FEATURE_HCU_ECC_ENGINE

20 hcu_ecc_config_t const *eccConfig; /*!< Specifies the ecc configuration */

21 #endif /* FEATURE_HCU_ECC_ENGINE %/

22 #if FEATURE_HCU_RSA_ENGINE

23 hcu_rsa_config_t const xrsaConfig; /x/< Specifies the rsa configuration *x/
24 #endif /x FEATURE_HCU_RSA_ENGINE */

25 } pke_user_config_t;

26

27 status_t PKE_DRV_Init(const pke_user_config_t * userConfig, pke_state_t
*state);

28

29 status_t HCU_DRV_EncryptRSA(uint32_t const *plainText, uint32_t length,
uint32_t *cipherText);

30

31 status_t HCU_DRV_DecryptRSA(uint32_t const *cipherText, uint32_t length,
uint32_t *plainText);

£ RSA 1t E /I, FEIEA PKE_DRV_Init X5 RSAEZESE, TEXESHHITIRA:
1. privateKeylLen: FAfAKFE

2. d: #h%A

3. publicKeyLen: N$AKE

4. e: NA

5. opLength: 3%&#E RSA-1024/2048/3072/4096
6. n: RSARSEZ—

Fe/E IR INZ S ARE RSA KK,

FEAEMZE, 1% APl 73 RSA_NO_PADDING &3, Bl RSA i+tEXEAKE GRS, il RSA-
4096, NIFEBASKER 4096bit, Bl 512 bytes, &R E 512 bytes, FEBITHE, &L 512
bytes, FEBE1THIEI,

ECC
ARG ER
1 typedef struct
2 {
3 hcu_ecc_alg_t oplLength; /*1< Specifies the length
of ECC operation */
4 uint32_t a[FEATURE_HCU_ECC_MAX_WORD_LENGTH]; /*1< Specifies the a of
ellipse %/
5 uint32_t b[FEATURE_HCU_ECC_MAX_WORD_LENGTH] ; /*1< Specifies the b of
ellipse */
6 uint32_t p[FEATURE_HCU_ECC_MAX_WORD_LENGTH]; /*1< Specifies the p of
ellipse %/
7 uint32_t gx[FEATURE_HCU_ECC_MAX_WORD_LENGTH]; /*1< Specifies the Gx of
base point G */
8 uint32_t gy[FEATURE_HCU_ECC_MAX_WORD_LENGTH] ; /*1< Specifies the Gy of
base point G */
9 uint32_t n[FEATURE_HCU_ECC_MAX_WORD_LENGTH] ; /*1< Specifies the n of
ellipse */
10 } hcu_ecc_config_t;
11
12 typedef struct
13 {
14 uint32_t *pointX; /*!< Pointer to the X of point */
15 uint32_t *pointY; /*!< Pointer to the Y of point */
16 } hcu_ecc_point_t;
17
18 typedef struct
19 {
20 #if FEATURE_HCU_ECC_ENGINE
21 hcu_ecc_config_t const *eccConfig; /*/< Specifies the ecc configuration */

22 #tendif /* FEATURE_HCU_ECC_ENGINE */

23
24
25
26
27
28

29
30
31
32
83

34

#if FEATURE_HCU_RSA_ENGINE
hcu_rsa_config_t const xrsaConfig; /#!/< Specifies the rsa configuration */
#endif /x FEATURE_HCU_RSA_ENGINE x/

} pke_user_config_t;

status_t PKE_DRV_Init(const pke_user_config_t * userConfig, pke_state_t
*state);

status_t HCU_DRV_ECCPointMul(uint32_t const *K, hcu_ecc_point_t const *pointP,

hcu_ecc_point_t *point);

status_t HCU_DRV_ECCPointAdd(hcu_ecc_point_t const *pointP, hcu_ecc_point_t
const *pointQ,

hcu_ecc_point_t *pointR);

[EI##7E ECCitE R, FZEIEA PKE_DRV_Init K73 ECC kLS, ECCEHE LX ECCETHT
ENSH—H, ABZ T ECCKEEE, ECC-128/192/256,

ECCIRET mREESRMEE, #AFBHEAE,

PKE it&

(ASEEZS

1

© 0 N O

10
11

12
13

14
15
16

status_t HCU_DRV_PreCalculate(uint32_t const *N, uint32_t *result);

status_t HCU_DRV_GetPKESub(uint32_t const *A, uint32_t const *E, uint32_t
*result);

status_t HCU_DRV_GetPKEAdd(uint32_t const *A, uint32_t const *E, uint32_t
*result);

status_t HCU_DRV_GetPKEDouble(uint32_t const *A, uint32_t *result);

status_t HCU_DRV_GetPKESquare(uint32_t const *A, uint32_t const *R2, uint32_t
*result);

status_t HCU_DRV_GetPKEMultiply(uint32_t const *A, uint32_t const *E, uint32_t
const *R2, uint32_t *result);

status_t HCU_DRV_GetPKEInverse(uint32_t const *A, uint32_t const *N, uint32_t
const *R2, uint32_t *result);

void hcu_pke_test(void)
{

17 pkeUserConfig.eccConfig = &eccConfig;

18 PKE_DRV_Init(&pkeUserConfig, &pkeState);

19

20 /* Pre-calculation */

21 HCU_DRV_PreCalculate(eccConfig.p, R2);

22 /r* (A + A) N x/

23 HCU_DRV_GetPKEDouble (eccConfig.gx, result);

24

25 /* (A + E) %N x/

26 HCU_DRV_GetPKEAdd (eccConfig.gx, eccConfig.gy, result);
27

28 /* (A - E) N x/

29 HCU_DRV_GetPKESub (eccConfig.gx, eccConfig.gy, result);
30

31 /* A XA X R%N*/

32 HCU_DRV_GetPKESquare (eccConfig.gx, R2, result);

33

34 /* A Xx E *x R%N x/

35 HCU_DRV_GetPKEMultiply(eccConfig.gx, eccConfig.gy, R2, result);
36

37 Jx 1/ A%N */

38 HCU_DRV_GetPKEInverse(eccConfig.gx, eccConfig.p, R2, result);
39 }

HESMNEIRM T — R ABIENIEE, HAF DIY MEEE.

ECDSA

(AREEZS
1 typedef struct
2 {
uint32_t const x*privateKey; /*x1< Specifies private key for
ECDSA, ignore if during signature verification */
4 hcu_ecc_point_t *publicKey; /*x1< Specifies public key
generated by private key by ECC */
5 uint32_t const *K; /*1< Specifies random number K
for ECDSA signature generate, ignore if during signature verification */
hcu_sha_type_t shaType; /*1< Specifies the type of SHA */
uint32_t msglLen; /*!< Specifies the message length
for ECDSA. */
8 uint32_t const *message; /*!1< Specifies the message for
ECDSA. */
9 uint32_t *hashResult; /*!< Specifies the hash result

(little endian) for message. */

10 uint32_t *R;

11 uint32_t *S;

12 } hcu_ecdsa_config_t;

13 #endif

14

15 status_t PKE_DRV_Init(const pke_user_config_t * userConfig, pke_state_t
*state);

16

17 status_t HCU_DRV_ECDSA_GenerateSignature(hcu_ecdsa_config_t * ecdsaCfg);
18
19 status_t HCU_DRV_ECDSA_VerifySignature(hcu_ecdsa_config_t * ecdsaCfg);

B4, EF ECDSA BANEEIIR PKE_DRV_Init k79 ECC iEZF &S,

BRI T

1. privateKey: A$H, EEXBNFEERAN, FRENTFTEZRA

2. publickey: A8, RIPRHL LHN—1T R, EEIHNAIRTERAN, TRENFTEHAN
3. Ko BEVE K, (NEZRFRFERA, @I TRNG K=E—AHREN LK

4, shaType: SHA B %1% SHA-256/384

5. msglen: HEMKE

6. message: JHE

7. hashResult: JERHHEERNSR, NAHERF debug, FFHEERERE

8. (R,S): &&3¢

AR NERIFEN K T ERRNEZXSERM, NREERTERMTN, BEREFRIESXEZZNER

E/‘J K ;FH’ {K/A;E1%FL\fﬁ1§:u\o

BRIISHIILL

LHEEXTLL

YTM32BIMEO |YTM32B1MD1 |YTM32B1MCO |YTM32B1MEl |YTM32B1HAO
KeySize 128/192/256 128 128 128/192/256 | 128/192/256
AES-ECB Y Y Y Y Y
AES-CBC Y Y Y Y Y
AES-CTR Y N N Y Y
AES-CCM Y N N Y Y
AES-CMAC Y Y Y Y Y

FHIMKTF ECDSA IS

SM4-ECB

SHA-256

SHA-384

RSA

RSA-1i

ECC

Z|lz|<|<| =<

Z|Z2| 2|1 2] 2

2| 2|22 2

Z| 2| <| <] 2

Z | 2| < <] <

ECC-

% DMAYR
IZSHAKIE

S FFSHAIAIE

N

N

Y

BEIEFIFO

Y

Y

Y

AESEBlock® Kk
TN I |

OxTFFF

OxTFFF

OXFFFF

OXFFFF

OXTFFF

SHA&Block® A
TN I |

OXFFFF

OXFFFF

OXFFFF

SDK IRk s

HCU_vl

HCU_vl

HCU_v2

HCU_v1

HCU_v1l

HCU_NVR
Start address

0x1000_0000

0x1000_0200

0x1000_3800

0x1000_0800

0x1000_0800

0x

HCU_NVR
End address

0x1000_03FF

0x1000_03FF

0x1000_39FF

0x1000_0BFF

0x1000_17FF

0x

HCU_NVR
BIRFHEET

32-bytes

16-bytes

16-bytes

32-bytes

32-bytes

HCU_NVR
RZTFHETIAA

32

32

32

32

128

HCU_NVR
A RER

RSA_NVR
Start address

0x

RSA_NVR
End address

0x

RSA_NVR
BIRTFHEET

RSA_NVR
RZTFHETIAA

RSA_NVR
A HRRR

MR

YTM32B1MCO HCU 3%
80MHz FIRC 47, & MIBE AR

1KB Message (us)

4KB Message (us)

AES-ECB 176.75 697.91
AES-CBC 178.63 699.64
AES-CMAC 105.2 400.45

YTM32B1ME1 HCU &=
120MHz PLL 5%, & MNZEAHRELLE
GCC Lt ZF2k-01 (-Ofast iraE/10usER)

1KB Message (us) 4KB Message (us)

AES-ECB 65.38/64.66 253.52/249.7
AES-CBC 66.44/65.02 254.54/250.08
AES-CTR 65.34/64.52 250.2/248.38
AES-CCM 70.4/64.72 256.42/248.74
AES-CMAC 52.46 168.44
SM4-ECB - -
SHA-256 45.46 168.26
SHA-384 47.68 167.46

YTM32B1MEO HCU %=
120MHz PLL E47i, EMINEEERRELLIR

1KB Message (us) 4KB Message (us)

AES-ECB 87.92 342.2
AES-CBC 87.65 340.34
AES-CTR 88.18 342.49
AES-CCM 104.49 357.28
AES-CMAC 75.68 272.37
SM4-ECB 86.75 339.52
SHA-256 65.54 247.92
SHA-384 65.86 248.25
YTM32B1HAO HCU %%

200MHz PLL E3%, & MINBEERRELLIR

1KB Message (us) 4KB Message (us) | 1KB Message (us) 4KB Message (us)

AES-ECB 160.55 620.24 4574 164.55
AES-CBC 174.34 673.28 42.76 162.06
AES-CTR 175.74 678.47 43.2 161.68
AES-CCM 197.57 695.32 72.82 240.72
AES-CMAC 129.11 452.15 36.03 121.29
SM4-ECB 155.17 598.69 42.24 161.42
SHA-256 124.88 467.23 32.92 118.88
SHA-384 124,51 467.7 26.5 93.43
YTM32B1MD2 HCU =

80M PLL F 4

R UTURAREMIYH us, RSAMEATHY[0XI0001, ECDSA {2315 ECC1256 et + SHAY

AES-ECB 1kB
AES-ECB 4kB
AES-CBC 1kB
AES-CBC 4kB
AES-CMAC 1kB
AES-CMAC 4kB
SHA-256 1kB
SHA-256 4kB
ECC-192 =N
ECC-192 =3k

ECC-256 =N

Flash Cache Flash Cache Flashno

RAM Cache RAM no Crd
Cache RAM Cache

159 160 206

599 602 794

162 162 209

611 604 803

92 110 162

327 395 613

90 120 138

319 430 513

2324 2428 2888

268 282 321

4079 4211 4804

Flash no
Cache

RAM no
Cache

225

878

231

894

97

342

162

606

2963

334

4894

Flash Cache DMA
Enable

RAM Cache

128

397

125

394

90

262

r

186

2327

270

4082

ECC-256 =3k

ECC-384 =N

ECC-384 3k

RSA-1024 Nz

RSA-1024 &%

RSA-2048 1Nz

RSA-2048 f&%

RSA-3072 Nz

RSA-3072 f&%

RSA-4096 %

RSA-4096 f&%

ECDSA 1kB %
£

ECDSA 1kB 3&
o

s

ECDSA 4kB %
&

ECDSA 4kB %
23

iy

442

7406

1066

234

11460

855

86008

1917

277092

3347

657466

9023

9445

9258

9677

458

7544

1088

234

11460

855

86008

1917

277092

3347

657466

9328

9670

9649

10008

505

8160

1141

241

11473

873

86035

1942

277132

3381

657520

10596

10953

10967

11323

515

8257

1158

242

11473

874

86035

1943

277133

3381

657520

10819

11200

11263

11644

444

7409

1068

234

11460

857

86007

1918

277090

3348

657466

9023

9445

9258

9677

