
YT-LINK User Manual​

介绍

YunTu YT-LINK 配置工具提供灵活强大的链接文件配置，精确控制每一字节的链接，所见即所得。​

功能

• 支持多种编译器，一次配置，无缝替换

◦ GCC​

◦ IAR​

◦ KEIL（AC6）​

◦ GHS​

• 根据Order和Name严格控制每个区间在内存上的布局​

• 灵活的初始化策略，指定RAM区间初始化条件​

◦ 不初始化（没有ECC的情况, 或者bootloader已经初始化）​

◦ 正常初始化

◦ POR（Power On Reset）初始化​

• 灵活的对齐模式

◦ 开始地址对齐

◦ 结束地址对齐

• 自动计算内存区间使用大小，开始地址和结束地址等

• 图像化拖拽界面配置，所见即所得

◦ 可视化内存分配

◦ 直观的内存COPY展示

• SYMBOL NAME自动产生，根据用户配置自动产生所有需要的SYMBOL​

• 数据化的配置，方便MPU，Cache，Secure Boot的使用​

• 默认配置，所有的芯片的都包含了默认YT-LINK配置，开箱即用​

核心概念和使用指南

功能介绍

完整的一个YT-LINK配置需要包括以下部分，每个操作快在鼠标悬停在上面的时候会显示如下的操作符

号，

删除这个操作快，Block操作快不能删除​

添加子操作快，Region操作快作为最小元素，不能再添加子的操作快​

编辑操作快，Block操作快的基础信息是更加芯片固定的，不能删除​

用户也可以用窗口右下角的交互按钮来控制YT-LINK的显示和配置。​

恢复系统默认的芯片初始化值​

显示整个YT-Link的配置树​

放大​

缩小​

自适应窗口​

Order​

绝大多数操作快都要Order的属性，Order决定了操作快的排序优先级，Order越小，优先级越高，同

样Order的情况下按照Name来排序。​

Block操作快​

每个芯片都有固定的基础Block，例如我们常见的内部FLASH和RAM，当然也可以增加一些额外的

Block如外部的FLASH（Nor/Nand Flash)或者RAM(SRAM，DDR）等。​

• Block操作快会根据子模块的使用大小，动态
显示整体的使用率

• Block操作快会列出开始的物理地址和结束的
物理地址

• Block操作快可以通过添加按钮来添加子的
Memory操作快​

Memory操作快​

每个Block操作快下可以有多个Memory操作快，每个Memory需要指定一个具体的大小空间，所有

Memory的和不能超过父Block操作快的大小。Memory可以指定从上开始计算还是从下开始计算，支

持多种初始化策略，如不初始化，POR（Power on reset) 下初始化，正常初始化等。Order属性决定

了排列顺序。

• Name: 同一个Block下操作快的Name必须是
唯一的

• Boundary​

◦ UPPER：从上（小地址）开始计算​

◦ LOWER：从下（大地址）开始计算​

◦ Order：排序优先级，Order相同，按照
Name来排序​

◦ Memory Size：Memory操作快的大小​

◦ Init Policy:​

▪ NULL，不初始化​

▪ NORMAL，正常初始化​

▪ POR_ONLY，PowerOnReset的时候才
初始化

左图的配置，由于IVT_RAM排在第一个位置（方

便地址对齐，不浪费RAM），我们讲IVT_RAM的

Order设置为0，RAM的Order设置为1，由于

STACK是的Boundary是LOWER，他的Order不会

影响UPPER区域的排序。Memory操作快可以添

加Group操作快​

Group操作快​

Group操作快是一个虚拟的概念，可以方便Section操作快的管理和分类。Group操作快下面可以有多

个Section操作快。​

Section操作快​

Section操作快是链接文件中重要的组成部分，Section支持灵活的配置，如对齐，固定大小，复制等

功能（data区域的copy)。​

• Name: 同一个Group操作快下的Name必须是
唯一的

• Order: 排序优先级，Order相同，按照Name
来排序

• Alignment: 必须是2的倍数，Section开始地
址的对齐要求

• End Alignment：必须是2的倍数，Section结
束地址的对齐要求

• Section Size：当Section操作快没有子的
Region操作快时，可以指定固定的大小来撑

开一个区间，stack，或者heap通常会用到这

个功能。

• Flag：对Section的一些特殊属性定义，这里
每个编译器会有差别

◦ GCC: 支持NOLOAD，​

◦ 其他不支持

• CopyFrom: 只有RAM块才有这个属性，当添
加了CopyFrom代表这个RAM区间的内容会在

初始化的时候从Flash复制到RAM里，被Copy

的Section操作快的子Region操作快这个时候

没有意义，以发起Copy的Section为准。被

copy的section会有一个箭头指向到发起copy

的section​

• Clear Section：是否清空这个Section，BSS
默认要开启这个属性。

每个section有如下的symbol name，${section_name}_start,${section_name}_end, 分别对应这

个section实际的Block起始地址和结束地址。​

如上图：你可以在你的C代码或者汇编代码访问，IVT_RAM_start，IVT_RAM_end 等symbol名字。​

KEIL限制​

Copy From限制​

由于Keil链接文件的语法特性，要求RegionName在使用前必须已经被定义(具体可以参考KEIL-Arm®

Compiler for Embedded Reference Guide, 4.7.6 章节)，所以在有多个CopyFrom Section存在的情况

下，如果A的Section优先级高于B的Section的优先级，那么被A Copy的Section的优先级也要高于被

B Copy的优先级。​

可以工作的情况如下图：

CODE_RAM 的优先级高于DATA_RAM（但他的Order意义，但是字母C大于字母D), 同时被COPY的的

CODE_FLASH的优先级也是高于DATA_FLASH.​

不可以工作的情况如下图：

CODE_RAM 的优先级高于DATA_RAM（但他的Order意义，但是字母C大于字母D), 但是被COPY的的

CODE_FLASH的优先级小于DATA_FLASH（DATA_FLASH的Order小于CODE_FLASH的Order）.​

这个情况下会提示如下错误：

SymbolName限制​

💡 由于KEIL的限制，${section_name}_start=Iamge$$${section_name}_start$$Base，

${section_name}_end=Iamge$$${section_name}_end$$Limit​

在KEIL中，你可以访问Iamge$$IVT_RAM_start$$Base，Iamge$$IVT_RAM_end$$Limit 等

symbol名字。​

Region操作快​

Region操作对应的是section具体里面包含的section name，如.data,.txt,.bss等​

上图会生成.code_ram的区域，可以使用attribute((section (".code_ram")))把对应的代码放到RAM区

间。

• Name: 同一个Section操作快下的Name必须
是唯一的,所有的name会自动加上"."作为前

缀，不需要再在name里加"."​

• Order: 排序优先级，Order相同，按照Name
来排序

• Alignment: 必须是2的倍数，Region开始地址
的对齐要求

• Flag：对Region的一些特殊属性定义，这里每
个编译器会有差别

◦ KEEP：都支持，KEIL通过--keep链接属性
来支持

• Filenames: 把.o或者.a 放入某个region, 具体
可以相应的例子和demo​

• Alt Symbol Start：生成一个额外的region开
始Symbol​

• Alt Symbol End: 生成一个额外的region结束
Symbol​

• Wildcard: 勾选这个选择后，region的名字会
变为，.name*, 不同编译器可能有细微差异，

方便把.text.mane 也放到text Region区间内​

每个Region有如下的symbol name${region_name}_region_start,${region_name}_region_end,

也支持增加额外的开始和结束symbol name，开始的alt sybmol

start=${region_name}_region_start, 结束的alt sybmol end= ${region_name}_region_end。​

KEIL限制​

Name限制​

如果这个section是用来放变量的，那么要根据情况在name里加入bss.${name}或者data.${name}的

前缀。

The section attribute specifies that a variable must be placed in a particular data section.​

Normally, armclang places the data it generates in sections like .data and .bss. However, you​

might require additional data sections or you might want a variable to appear in a special

section,​

for example, to map to special hardware.​

If you use the section attribute, read-only variables are placed in RO data sections, writable​

variables are placed in RW data sections.​

To place ZI data in a named section, the section must start with the .bss. prefix. Non-ZI data​

cannot be placed in a section name with the .bss. Prefix.​

 From Keil attribute((section("name"))) variable attribute​

例如 uint32_t a 要放到retention_ram region, 那么region名字必须要为(bss.retention_ram)​

同时代码也要如此

attribute((section(".bss.retention_ram")))​

uint32_t retentionRamData[RETENTION_RAM_SIZE_IN_WORDS/100];​

SymbolName限制​

💡 由于KEIL的限制，

${section_name}_region_start=Iamge$$${section_name}_region_start$$Base，

${section_name}_region_end=Iamge$$${section_name}_region_end$$Limit​

其他模块依赖

Device模块需要选择对应的LINK的section或者region来生成正确的启动文件，如下图​

VECTOR RAM SYMBOL 需要选择一个RAM Section来存放VECTOR_TABLE。​

Example​

在RAM上运行​

以 YTM32B1MC03 为例，YTM32B1MC03 的 RAM 空间为 0x2000_0000 ~ 0x2000_7FFF 共 32KB，想

让程序在 RAM 上运行可按如下方式配置 YT-LINK​

注意不用对 RAM memory 进行初始化​

Secure Boot 配置​

以 YTM32B1MC03 为例，YTM32B1MC03 的 Secure Boot 的配置区域(BVT) 可以放在 0x0003_FE00 ~

0x0003_FFFF，可参考如下配置​

开辟一段空间存放Bootloader和APP的交互信息​

当Bootloader更新APP时，需要在RAM存放一些临时数据比如更新请求、完成标志，然后产生功能复

位。所以这里的需求就是功能复位以后，能够保持一部分RAM中的数据不变。​

1. 创建一个Memory例如BOOT_RAM，Init Policy选择POR_ONLY。保证BOOT_RAM部分Memory

仅在上电复位（POR）时初始化一次ECC，当功能复位时不初始化ECC，以便达到功能复位保留

RAM内容的效果。​

2. 创建一个Group例如BOOT_RAM。​

3. 创建一个Section例如BOOT_RAM，Flag选择NOLOAD。因为该段的数据由Bootloader和APP维护

更新，不需要从Text段加载。​

4. 创建一个Region例如boot_bss。​

5. 创建完的LINK分布如下图。​

6. 在代码中使用使用__attribute__((section(".section_name")))关键字去修饰声明的变量例如

BootInfo。​

__attribute__((section(".boot_bss"))) volatile uint32_t BootInfo[2U];1

该变量在map文件中位置如下​

 *(.boot_bss)
 .boot_bss 0x200000c0 0x8 CMakeFiles/demo.elf.dir/app/main.c.o
 0x200000c0 BootInfo
 0x200000c8 boot_bss_region_end = .
 0x200000c8 BOOT_RAM_end = .

1
2
3
4
5

利用Region的Filenames把一个库直接放到RAM里运行​

有时候我们一些已经编译好的库可以通过Filenames的方式直接放到RAM里，启动文件会自动把整个库

的目标区域复制到RAM区域，下面以GCC为例，把libGENERATED_SDK_TARGET.a这个库的text段全

部放到RAM里。​

1. 修改默认text region 的配置，去掉wildcard勾选，用EXCLUDE_FILE语法，告诉text region 包含除

了libGENERATED_SDK_TARGET.a库的其他所有text.*​

2. 修改data region的配置，把libGENERATED_SDK_TARGET.a的所有text放到data区域​

这样我们这个库的所有text（函数）就被放到RAM里面运行了，下面是链接文件的部分截图：​

MPU CACHE 与 YT-LINK 联动​

彭建棚 后续有时间可以完善一下这个例子​

javascript:void(0)

